Utilities Board of the Town of Odenville

Volume 23, Issue 1

June 15, 2021

CONSUMER REPORT

Utilities Board of the Town of Odenville P.O. Box 88 14487 US Highway 411 Odenville, AL 35120 Office Hours: 8:00 a.m. to 4:30 p.m. Monday - Friday Telephone: (205) 629-5801 Fax: (205) 629-5769 Email: mayorprotem@msn.com

Board of Directors

Paul Riddle, Chairman Jack Stepp, Vice-Chairman Mike Washington, Secretary Jimmy Bailey, General Manager Brad Sanders, Asst. Manager Brent Stephens, Asst. Manager Casie Roberson, Office Mgr.

NOTICE

ON MAY 2, OUR LOBBY WAS **RE-OPENED TO THE PUBLIC** DURING REGULAR BUSINESS HOURS. THE DRIVE-THRU AND LOBBY ARE NOW OPEN MONDAY - FRIDAY FROM 8:00 AM. TO 4:30 PM., EXCLUDING HOLIDAYS. WE HAVE INSTALLED PROTEC-TIVE PARTITIONS FOR THE SAFETY OF OUR CUSTOMERS AND EMPLOYEES. IF YOU HAVE NOT YET RECEIVED THE COVID VACCINATION, WE ASK THAT YOU WEAR A MASK WHILE VISITING OUR **OFFICE.**

ODENVILLE UTILITIES BOARD

Check out our NEW WEBSITE WWW.OUbwater.com Pay Your Bill / Sign Up For Alerts

ANNUAL REPORT ON THE QUALITY OF OUR DRINKING WATER

This report is presented by the Utilities Board of the Town of Odenville to inform you about the quality of your drinking water. Each year we will report to you the efforts we make to continually improve the water treatment process and protect our water resources. We want to provide you with information which confirms our commitment to ensuring the quality and quantity of your drinking water. The Odenville Utilities Board is currently providing clean, safe water to over 50,000 people in central St. Clair County and southern Etowah County.

The Utilities Board obtains our water from groundwater sources consisting of eight (8) wells. These wells draw water from three (3) primary aquifers contained within underground rock formations such as Tuscumbia Limestone/Ft. Payne Chert (Well #3), Hartselle Sandstone (Well #7), Floyd Shale and Bangor Limestone (Wells # 4,5,8&9). Wells #10 and #11 are developed in the Knox Group in the Valley and Ridge Province in Alabama. Well #10 and #11 are the primary sources for the Northeastern portion of the system including the City of Rainbow City. On November 30, 2011 the Odenville Utilities Board began purchasing a portion of our water supply from the Coosa Valley Water Supply District (CVWSD). The results of contaminant monitoring by CVWSD have been incorporated into this report. A source water protection plan for these sources has been completed and is on display for your inspection at our office. This plan contains geological studies which were performed to determine such things as aquifer size, direction of travel of underground water, time of travel, and other geological features. Our Wellhead Protection Plan has been further developed to include a Contaminant Site Inventory to locate and identify potential contaminant sites and to develop strategies to protect our water supplies.

We are pleased to report that all our drinking water is safe for consumption and exceeds all state and federal water quality requirements. If you have any questions about this report or concerning your water service, please contact General Manager Jimmy Bailey at (205) 629-5801 or by email at jbailey@ oubwater.com. If you want to learn more about your water system and it's efforts to provide quality water service, please attend any of our regularly scheduled Board of Directors meetings. They are held on the second Friday of each month at 4:00 p.m. at the Utilities Board office. These meeting dates are subject to change, so please call our office to confirm the date and time of our next meeting.

On page 3 of this report you will find a Table of Primary and Secondary Drinking Water Contaminants and a list of Unregulated Contaminants for which our water system routinely monitors. These contaminants were not detected in your drinking water unless they are listed in the Table of Detected Contaminants on Page 2. The data presented is from the most recent testing done in accordance with applicable regulations. All drinking water, including bottled water may be reasonably expected to contain at least small amounts of some constituents. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

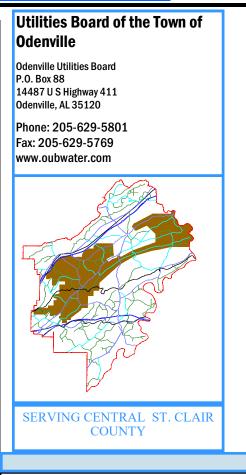
The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material, and it can pick up substances resulting from the presence of animals or from human activity.

To ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Odenville Utilities Board is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <u>www.epa.gov/safewater/lead</u>.

As you can see by the table below, our system had no monitoring violations. We have learned through our monitoring and testing that some constituents have been detected. This table shows the results of our most recent monitoring. All drinking water may be reasonably expected to contain at least small amounts of contaminants. It is important to remember that the presence of these contaminants does not necessarily pose a health risk.

							ants for			
			Most r	ecent sa	mpling	for caler	ndar yea	r 2020		
						Amount De	etected			
	Violation Y/N	MCLG	MCL	Unit	Minimum	Maximum	Average		Likely Source of Contamination	
acteriological (monthly)	NO	N/A	<5%		0.00	0.00	0.00		Naturally present in environment	
Turbidity current	NO	N/A	5	avg. NTU	0.02	1.93	0.14		Soil runoff	
Radiological 2020										
Alpha emitters (pCi/l)	NO	0	15	pCi/l	<1.5	4.8	1.33		Erosion of natural deposits	
Combined Radium (pCi/l)	NO	5	5	pCi/l	<0.7	1.50	0.58		Erosion of natural deposits	
norganic Chemicals 2019									Discharge of drilling wastes; Discharge from metal ref	
Barium	NO	2		ppm	0.00	0.11	0.03		eries; Erosion of natural deposits	
Chlorine current	NO NO	MRDLG =4	4 AL=1.3	ppm	1.50 0.001	0.07	1.54 0.01		Water additive used to control microbes Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives	
				ppm						
Chromium	NO	100	100	Ppb	0	1	0.12		Erosion of natural deposits	
See Note 1 Lead &							90th%tile		Corrosion of household plumbing systems; erosion of	
2018 Copper Testing	NO		AL=1.3	ppm	0.03	1.61	1.28		natural deposits; leaching from wood preservatives	
Nitrate 2020	NO	10	10	ppm	0.17	0.61	0.27		Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits	
Organic Chemicals 2019										
CVWSD* HAA5 (LRAA)	NO	0	60	ppb	16.0	35.0	26.5		By-product of drinking water chlorination	
OUB HAA5 (LRAA)	NO	0	60	ppb	0.0	21.0	3.50		By-product of drinking water chlorination	
TOC (Total Organic Carbon)	NO	N/A	TT	ppm	0.1	0.3	0.21		Soil runoff	
CVWSD* TTHM (LRAA)	NO	0	80	ppb	17.0	52.0	34.5		By-product of drinking water chlorination	
OUB TTHM (LRAA)	NO	0	80	ppb	0	34.3	7.03		By-product of drinking water chlorination	
econdary Contaminants 2019										
									Erosion of natural deposits or as a result of treatment	
Iron	NO	N/A	0.3	ppm	0.0	0.07	0.01		with water additives	
							497.6		Naturally occurring in the environment or as a result o	
Hardness	NO	N/A	N/A	ppm	0	181	127.6		treatment with water additives	
рН	NO	N/A	N/A	S.U.	6.64	7.45	7.22		Naturally occurring in the environment	
Chloride	NO	N/A	250	ppm	2.53	3.98	3.25		Naturally occurring in the environment or as a result o industrial discharge or agricultural runoff	
Sodium	NO	N/A	n/a	ppm	0.0	28.6	4.50		Naturally occurring in the environment	
Journ	NO	N/A	11/ a	ppin	0.0	20.0	4.50		Naturally occurring in the environment or as a result o	
Sulfate	NO	N/A	250	ppm	0.32	5.16	3.31		industrial discharge or agricultural runoff	
									Naturally occurring in the environment or as a result o	
Total Dissolved Solids	NO	N/A	500	ppm	114.0	188.0	158.0		industrial discharge or agricultural runoff	
			-						Erosion of natural deposits; discharge from refineries a	
Zinc	NO	N/A	5	ppm	0.00	0.39	0.06		factories; runoff from landfills	
		U	nregulated	Contamina	nts for whic	ch no MCL h	has been est	ablished	(Parts per billion)	
Investigated Conteminents 2020	OUB		cvwsD*			Combined				
Inregulated Contaminants 2020	Samples			mmh	0	Combined	A 41		Disinfection By-product	
Chloroform	0-29.7		10.3	ppb	0	29.7	4.41			
Bromodichloromethane	0 - 10.3		5.22	ppb	0	10.3	1.94		Disinfection By-product	
Dibromochloromethane Monochloroacetic acid	0 - 1.7 0 - 16.0			ppb	0	3.2 16.0	0.54 6.32		Disinfection By-product	
				ppb	0				Disinfection By-product	
Dichloroacetic acid UCMR4	0-15.0			ppb		15.0	2.00		Disinfection By-product Disinfection By-product	
Trichloroacetic acid UCMR4	0-11.0			ppb	0	11.0	1.82		· · ·	
Dibromoacetic Acid UCMR4	0 - 1.0			ppb		1.0	0.04		Disinfection By-product	
ICMPA Testing		U	megulated			ing require	ed by EPA fo	or data co		
JCMR4 Testing 2019/20				Unit	<u> </u>	2.4	1.00		Disinfaction By product	
Bromochloroacetic Acid	0 - 3.4	+	-	ppb	0	3.4	1.00		Disinfection By-product	
Bromodichloroacetic Acid	0-3.1			ppb	0	3.1	1.01		Disinfection By-product	
Chlorodibromoacetic Acid	0 - 0.78	+		ppb	0	0.78	0.23		Disinfection By-product	
Dibromoacetic Acid	0-0.45	+	-	ppb	0	0.45	0.13		Disinfection By-product	
Dichloroacetic Acid	0 - 14.8			ppb	0	14.8	4.05		Disinfection By-product	
Haloacetic Acids (Total)	0 -28.4			ppb	0	28.4	6.96		Disinfection By-product	
Annachiana antic A -!-!									Disinfection By-product	
Monochloroacetic Acid	0 - 2.8	-		ppb	0	2.8	0.31			
Monochloroacetic Acid Irichloroacetic Acid Manganese UCMR 541	0 -2.8 0 -13.2 0 -7.4			ppb ppb ppb	0	2.8 13.2 7.4	2.59		Disinfection By-product Disinfection By-product Erosion of natural deposits	


Note 1: Lead and Copper sampling was performed during August 2018 with 30 samples being taken at various homes throughout the system. Lead was detected in 6 of 30 samples at the lowest detectable levels (0.001,0.002 ppm) with the 90th percentile being 0.001 ppm (Lead Action Level = 0.015 ppm). Copper sampling ranged from 0.03ppm to 1.20ppm with the 90th percentile for Copper being 1.28 ppm (Action Level = 1.30 ppm) **Note 2:** Based on a study conducted by ADEM with the approval of the EPA a statewide waiver for the monitoring of asbestos and dioxin was issued.

Consumer	Report
----------	--------

Utilities Board of the Town of Odenville tandard List of EPA Primary Drinking Water Contaminan

Page 3

Standard List of EPA Primary Drinking Water Contaminants Unit of Unit of Unit of												
Contaminant	MCL	Measurement	Contaminant	MCL								
	MCL	Measurement		100	Measurement							
acteriological	< 5.0/	Durantarahant	Endothall		ppb							
btal Coliform Bacteria (Monthly Sampling)	< 5 %	Present or absent	Endrin	2	ppb							
urbidity (Continuous)	TT 0	NTU	Epichlorohydrin	TT	TT							
ecal coliform and E.coli	TT	Present or absent	Glyphosate	700 400	ppb							
ecal Indicators (enterococci or coliphage)		Present or absent	Heptachlor	400	ppt							
ryptosporidium	TT TT	Calc. organisms/L	Blank									
iardia	11	Calc. organisms/L	Blank	200								
adiological		N/	Heptachlor epoxide	200	ppt							
eta/photon emitters (mrem/yr)	4	Mrem/yr	Hexachlorobenzene	1	ppb							
ross Alpha (pCi/l)	15	pCi/L	Hexachlorocyclopentadiene	50	ppb							
ombined radium (pCi/l) 26 and 228	5	pCi/L	Blank									
ranium	30	pCi/L	Lindane	200	ppt							
organic Chemicals	50	pert	Methoxychlor	40	ppt							
-	(ppb							
ntimony	6	ppb	Oxamyl [Vydate]	200	ppb							
rsenic	10	ppb	PCBs	500	ppt							
sbestos (MFL)	7	MFL	Pentachlorophenol	1	ppb							
arium	2	ppm	Picloram	500	ppb							
eryllium	4	ppb	Simazine	4	ppb							
admium	5	ppb	Toxaphene	3	ppb							
hromium	100	ppb	Benzene	5	ppb							
opper	AL=1.3	ppm	Carbon tetrachloride	5	ррb							
yanide	200	ppb	Chlorobenzene	100	ppb							
uoride	4	ppm	Dibromochloropropane	200	ppt							
ead	AL=15	ppb	o-Dichlorobenzene	600	ppb							
lercury	2	ppb	p-Dichlorobenzene	75	ppb							
itrate	10	ppm	1,2-Dichloroethane	5	ppb							
itrite	1	ppm	1,1-Dichloroethylene	7	ppb							
otal Nitrate and Nitrite	10	ppm	Blank	,	PPS							
elenium	50 ppb	ppb	cis-1,2-Dichloroethylene	70	ppb							
hallium	2 ppb		trans-1,2-Dichloroethylene	100								
rganic Chemicals	2 pp0	ppb	Dichloromethane	5	ppb ppb							
4-D	70	nnh	1,2-Dichloropropane	5								
		ppb			ppb							
4,5-TP(Silvex)	50	ppb	Ethylbenzene	700	ppb							
crylamide	TT	TT	Ethylene dibromide	50	Ppt							
lachlor	2	ppb	Styrene	100	ppb							
trazine	3	ppb	Tetrachloroethylene	5	ppb							
enzo(a)pyrene [PAHs]	200	ppt	1,2,4-Trichlorobenzene	70	ppb							
arbofuran	40	ppb	1,1,1-Trichloroethane	200	ppb							
hlordane	2	ppb	1,1,2-Trichloroethane	5	ppb							
alapon	200	ppb	Trichloroethylene	5	ppb							
i (2-ethylhexyl)adipate	400	ppb	TTHM	80	ppb							
i (2-ethylhexyl) phthlates	6	ppb	Toluene	1	ppm							
inoseb	7	ppb	Vinyl Chloride	2	ppb							
iquat	20	ppb	Xylenes	10	ppm							
ioxin [2,3,7,8-TCDD]	30	ppb	TOC	TT	TT							
hloramines	MRDL=4	ppm	Chlorine (Continuous Monitoring)	4	ppm							
hlorite	1	ppm	Chlorine Dioxide	800	ppb							
AA5	60	ppb	Bromate	10	ppb							
econdary Drinking Water Contaminants												
luminum	0.2	ppm	Chloride	250	ppm							
olor	15	units	Copper	1	ppm							
oaming Agents	0.5	ppm	Iron	0.3	ppm							
langanese	0.05	ppm	Odor	3	T.O.N.							
ilver	0.05	ppm	Sulfate	250	ppm							
otal Dissolved Solids	500	maa	Zinc	5	nnm							
otal Dissolved Solids	500	ppm	ZIIIC	5	ppm							

DEFINITIONS

In the tables on pages 2 & 3 you will find terms and abbreviations you might not be familiar with. To help you better understand these terms we have provided the following definitions:

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years, or a single penny in \$10,000. Nephelometric Turbidity Unit (NTU) - nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5.0 NTU is just noticeable to the average person.

Parts per billion (ppb) or Micrograms per liter—one part per billion corresponds to one minute in two thousand years, or a single penny in \$10,000,000. Action Level (AL) - the concentrations of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Treatment Technique - A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions - ADEM or EPA permission not to meet an MCL or a treatment technique under certain conditions

Maximum Residual Disinfectant Level or MRDL - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal or MRDLG - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

The Utilities Board is proud to add this Vacuum Excavating Unit to our fleet of equipment. This unit will enable us to excavate with high pressure water and remove the excavated material by vacuum. This allows work to be done with less impact to yards and other utilities. The vacuumed material is placed in a tank and removed from the site. Dry material is brought in to backfill the excavation leaving the site much neater and less disturbed. The unit also provides increased safety for our employees and less risk of damage when working around other utilities.

Excavating underground water and sewer mains is an almost daily task in our 550 mile system of water and sewer piping. We are constantly striving to improve our methods and quality of work for our customers.

Some people may be more vulnerable to contaminants in drinking water than the general population. People who are immuno-compromised such as cancer patients undergoing chemotherapy, organ transplant recipients, HIV/AIDS positive or other immune system disorders, some elderly, and infants can be particularly at risk from infections. People at risk should seek advice about drink-

seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Safe Drinking Water Hotline 1-800-426-4791