Utilities Board of the Town of Odenville

Volume 22, Issue 1

June 15, 2020

CONSUMER REPORT

Utilities Board of the Town of Odenville P.O. Box 88 14487 US Highway 411 Odenville, AL 35120 Office Hours: 8:00 a.m. to 4:30 p.m. Monday - Friday Telephone: (205) 629-5801 Fax: (205) 629-5769 Email: mayorprotem@msn.com

Board of Directors

Paul Riddle, Chairman Jack Stepp, Vice-Chairman Mike Washington, Secretary Jimmy Bailey, General Manager Brad Sanders, Asst. Manager Brent Stephens, Asst. Manager Casie Roberson, Office Mgr.

NOTICE

Our lobby remains closed due to Covid-19 concerns. The drive thru is open Monday – Friday from 8:00 a.m. to 4:30 p.m. We are in the process of installing protective partitions for the safety of our customers and employees when the lobby is re-opened. We will post our re-opening date on our website and on your water bill.

ODENVILLE UTILITIES BOARD

WWW.OUbWater.com Pay Your Bill / Sign Up For Alerts

ANNUAL REPORT ON THE QUALITY OF OUR DRINKING WATER

This report is presented by the Utilities Board of the Town of Odenville to inform you about the quality of your drinking water. Each year we will report to you the efforts we make to continually improve the water treatment process and protect our water resources. We want to provide you with information which confirms our commitment to ensuring the quality and quantity of your drinking water. The Odenville Utilities Board is currently providing clean, safe water to over 30,000 people in central St. Clair County.

The Utilities Board obtains our water from groundwater sources consisting of eight (8) wells. These wells draw water from three (3) primary aquifers contained within underground rock formations such as Tuscumbia Limestone/Ft. Payne Chert (Well #3), Hartselle Sandstone (Well #7), Floyd Shale and Bangor Limestone (Wells # 4,5,8&9). Wells #10 and #11 are developed in the Knox Group in the Valley and Ridge Province in Alabama. Well #10 and #11 are the primary sources for the Northeastern portion of the system including the City of Rainbow City. On November 30, 2011 the Odenville Utilities Board began purchasing a portion of our water supply from the Coosa Valley Water Supply District (CVWSD). The results of contaminant monitoring by CVWSD have been incorporated into this report. A source water protection plan for these sources has been completed and is on display for your inspection at our office. This plan contains geological studies which were performed to determine such things as aquifer size, direction of travel of underground water, time of travel, and other geological features. Our Wellhead Protection Plan has been further developed to include a Contaminant Site Inventory to locate and identify potential contaminant sites and to develop strategies to protect our water supplies.

We are pleased to report that all our drinking water is safe for consumption and exceeds all state and federal water quality requirements. If you have any questions about this report or concerning your water service, please contact General Manager Jimmy Bailey at (205) 629-5801 or by email at jbailey@oubwater.com. If you want to learn more about your water system and it's efforts to provide quality water service, please attend any of our regularly scheduled Board of Directors meetings. They are held on the second Friday of each month at 4:00 p.m. at the Utilities Board office. These meeting dates are subject to change, so please call our office to confirm the date and time of our next meeting.

On page 3 of this report you will find a Table of Primary and Secondary Drinking Water Contaminants and a list of Unregulated Contaminants for which our water system routinely monitors. These contaminants were not detected in your drinking water unless they are listed in the Table of Detected Contaminants on Page 2. The data presented is from the most recent testing done in accordance with applicable regulations. All drinking water, including bottled water may be reasonably expected to contain at least small amounts of some constituents. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material, and it can pick up substances resulting from the presence of animals or from human activity.

To ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Odenville Utilities Board is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <u>www.epa.gov/safewater/lead</u>.

As you can see by the table below, our system had no monitoring violations. We have learned through our monitoring and testing that some constituents have been detected. This table shows the results of our most recent monitoring. All drinking water may be reasonably expected to contain at least small amounts of contaminants. It is important to remember that the presence of these contaminants does not necessarily pose a health risk.

Table Of Detected Contaminants for CCR												
Most recent sampling for calendar year 2019												
Amount Detected												
	Violation Y/N	MCLG	MCL	Unit	Minimum	Maximum	Average		Likely Source of Contamination			
Bacteriological (monthly)	NO	N/A	<5%		0.00	0.00	0.00		Naturally present in environment			
Turbidity current	NO	N/A	5	avg. NTU	0.03	1.05	0.14		Soil runoff			
Radiological 2017-19												
Alpha emitters (pCi/l)	NO	0	15	pCi/l	0.00	4.8	1.01		Erosion of natural deposits			
Combined Radium (pCi/l)	NO	5	5	pCi/l	0.00	1.50	0.48		Erosion of natural deposits			
Inorganic Chemicals 2019												
Barium	NO	,	,	nnm	0.00	0 11	0.02		Discharge of drilling wastes; Discharge from metal refin-			
Chlorine current	NO	MRDIG =4	4	nnm	1.45	3.00	2 10		Water additive used to control microbes			
chiome current	110		-	ppm	1.45	5.00	2.10		Corrosion of household plumbing systems: erosion of			
Copper Naturally occuring	NO	1.3	AL=1.3	ppm	0.001	0.07	0.01		natural deposits; leaching from wood preservatives			
See Note 1 Lead &							90th%tile		Corrosion of household plumbing systems; erosion of			
2018 Copper Testing	NO		AL=1.3	ррт	0.03	1.61	1.28		natural deposits; leaching from wood preservatives			
							0.07		Runoff from fertilizer use; leaching from septic tanks,			
Nitrate Organia Chamisala 2010	NO	10	10	ppm	0.17	0.61	0.27		sewage; erosion of natural deposits			
CV(M(SD* HAA5 (LRAA)	NO	0	60	nnh	19 5	22.6	21.05		By product of drinking water chlorination			
	NO	0	60	nnh	0.0	23.0	4 75		By-product of drinking water chlorination			
TOC (Total Organic Carbon)	NO	N/A	TT	nom	0.1	0.3	0.21		Soil runoff			
CVWSD* TTHM (LRAA)	NO	0	80	daa	29.6	35.4	32.5		By-product of drinking water chlorination			
OUB TTHM (LRAA)	NO	0	80	ppb	0	40.6	8.73		By-product of drinking water chlorination			
Secondary Contaminants 2019												
									Erosion of natural deposits or as a result of treatment			
Iron	NO	N/A	0.3	ppm	0.0	0.07	0.01		with water additives			
									Naturally occurring in the environment or as a result of			
Hardness	NO	N/A	N/A	ppm	0	181	127.6		treatment with water additives			
рн	NO	N/A	N/A	5.0.	0.04	7.45	1.22		Naturally occurring in the environment			
Chloride	NO	N/A	250	maa	2.53	3.98	3.25		industrial discharge or agricultural runoff			
Sodium	NO	N/A	n/a	ppm	0.0	28.6	4.50		Naturally occurring in the environment			
									Naturally occurring in the environment or as a result of			
Sulfate	NO	N/A	250	ppm	0.32	5.16	3.31		industrial discharge or agricultural runoff			
						400.0	450.0		Naturally occurring in the environment or as a result of			
Total Dissolved Solids	NO	N/A	500	ppm	114.0	188.0	158.0		industrial discharge or agricultural runoff			
Zinc	NO	N/A	5	maa	0.00	0.39	0.06		factories: runoff from landfills			
		, U	nregulated	Contamina	nts for whi	ch no MCL h	nas been est	ablished	(Parts per billion)			
	OUB											
Unregulated Contaminants 2019	Samples		CVWSD*			Combined		-				
Chloroform	0-29.7		10.3	ppb	0	29.7	4.41		Disinfection By-product			
Bromodichloromethane	0 - 10.3		5.22	ppb	0	10.3	1.94		Disinfection By-product			
Chlorodibromomethane	0		1.07	ppb	0	1.07	0.85		Disinfection By-product			
Dibromochloromethane	0 - 1.7			ppb	0	3.2	0.54		Disinfection By-product			
Monochloroacetic acid	0 - 16.0			ppb	0	16.0	6.32		Disinfection By-product			
Trichloroacetic acid UCMR4	0-13.2			ppb	0	13.2	2.59		Disinfection By-product			
Dichloroacetic acid UCMR4	0-15.0			ррр	0	15.0	2.00		Disinfection By-product			
Dibromoacetic Acid UCIVIK4	0 - 1.0	l 	nrogulated	Contamina	U Ints Monite	LIU	od by EPA-fe	or data e	ollection			
UCMR4 Testing 2019			Inegulateu	Unit								
Duran		ı 	Г с с с			40.2		ı 				
Bromocnioroacetic Acid	0 - 10.3		5.22	ppp	0	10.3	1.94		Disinfection By-product			
Chlorodibromozotic Acid	0.17		1.07	ubp Dub	0	1.0/	0.85					
Haloacetic Acids (Total)	0-28.4	<u> </u>		ppb	0	28.4	6.96		Disinfection By-product			
Manganese	0-7.4			Pob	0	7.4	1.03		Naturally occurring in the environment			
		ı	1									

See page 4 for definitions relative to the information presented in these tables.

*Coosa Valley Water Supply District

Note 1: Lead and Copper sampling was performed during August 2018 with 30 samples being taken at various homes throughout the system. Lead was detected in 6 of 30 samples at the lowest detectable levels (0.001,0.002 ppm) with the 90th percentile being 0.001 ppm (Lead Action Level = 0.015 ppm). Copper sampling ranged from 0.03ppm to 1.20ppm with the 90th percentile for Copper being 1.28 ppm (Action Level = 1.30 ppm)

Note 2: Based on a study conducted by ADEM with the approval of the EPA a statewide waiver for the monitoring of asbestos and dioxin was issued. Thus, monitoring for these contaminants was not required.

Consumer	Report
----------	--------

Utilities Board of the Town of Odenville

Page 3

Standard List of Primary Drinking Water Contaminants										
Contominant	мсі	Unit of Massurement	Contominant	MCI	Unit of Monsurament					
	MCL	Measurement	Contaminant	MCL	Wieasurement					
Bacteriological	< 5.0/	Duccent on chooset	Endotnall	100	рро					
Turkidity (Continuous)	< 5 %	Present or absent	Endrin Enishlanahydnin	2	рро					
Fecal coliform and E coli	0	Present or absent	Glyphosate	700	nnh					
Fecal Indicators (enterococci or coliphage)	ТТ	Present or absent	Heptachlor	400	ppo					
Cryptosporidium	ТТ	Calc organisms/L	Blank		PP*					
Giardia	TT	Calc. organisms/L	Blank	_	<u>.</u>					
Radiological		5	Heptachlor epoxide	200	ppt					
Beta/photon emitters (mrem/yr)	4	Mrem/yr	Hexachlorobenzene	1	ppb					
Gross Alpha (pCi/l)	15	pCi/L	Hexachlorocyclopentadiene	50	ppb					
Combined radium (pCi/l)	5	pCi/L	Blank							
Uronium	20	»СіЛ	Lindona	200	nnt					
Uranium Inorgania Chamicals	30	pci/L	Lindane	200	ppi					
Antimony	6	nnh	Overwyl [Vydeta]	200	ppo					
Antimony	0	ppo		200	ppo					
Asbestos (MEL)	7	MFI	Pentachlorophenol	1	ppt					
Barium	2	mm	Pieloram	500	ppb					
Bervllium	4	ppIII	Simazine	4	ppb					
Cadmium	5	ppo	Toxanhene	3	ppo					
Chromium	100	ppb	Benzene	5	ppb					
Copper	AL=1.3	ppm	Carbon tetrachloride	5	ppb					
Cvanida	200	nnh	Chlorobenzene	100	nnh					
Eluoride	200	ppo	Dibromochloropropane	200	ppo					
		ppin		200	ppt					
Lead	AL=15	ppb	o-Dichlorobenzene	600	ppb					
Nitrate	10	ppo	p-Dichloroethane	5	ppo					
Nitrite	1	ppm	1.1-Dichloroethylene	7	ppb					
Total Nitrate and Nitrite	10	ppm	Blank	,	рро					
Selenium	50 ppb	pphi	cis-1 2-Dichloroethylene	70	pph					
Thallium	2 ppb	ppb	trans-1.2-Dichloroethylene	100	ppb					
Organic Chemicals		rr-	Dichloromethane	5	ppb					
2,4-D	70	ppb	1,2-Dichloropropane	5	ppb					
2,4,5-TP(Silvex)	50	ppb	Ethylbenzene	700	ppb					
Acrylamide	TT	TT	Ethylene dibromide	50	Ppt					
Alachlor	2	ppb	Styrene	100	ppb					
Atrazine	3	ppb	Tetrachloroethylene	5	ppb					
Benzo(a)pyrene [PAHs]	200	ppt	1,2,4-Trichlorobenzene	70	ppb					
Carbofuran	40	ppb	1,1,1-Trichloroethane	200	ppb					
Chlordane	2	ppb	1,1,2-Trichloroethane	5	ppb					
Dalapon	200	ppb	Trichloroethylene	5	ppb					
Di (2-ethylhexyl)adipate	400	ppb	TTHM	80	ppb					
Di (2-ethylhexyl) phthlates	6	ppb	Toluene	1	ppm					
Dinoseb	7	ppb	Vinyl Chloride	2	ppb					
Diquat	20	ppb	Xylenes	10	ppm					
Dioxin [2,3,7,8-TCDD]	30	ppb	ТОС	TT	TT					
Chloramines	MRDL=4	ppm	Chlorine (Continuous Monitoring)	4	ppm					
Chlorite	1	ppm	Chlorine Dioxide	800	ppb					
HAA5	60	ppb	Bromate	10	ppb					
Secondary Drinking Water Contaminants										
Aluminum	0.2	ppm	Chloride	250	ppm					
Color	15	units	Copper	1	ppm					
Foaming Agents	0.5	ppm	Iron	0.3	ppm					
Manganese	0.05	ppm	Odor	3	T.O.N.					
Silver	0.1	ppm	Sulfate	250	ppm					
Total Dissolved Solids	500	ppm	Zinc	5	ppm					

In the tables on pages 2 & 3 you will find terms and abbreviations you might not be familiar with. To help you better understand these terms we have provided the following definitions:

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years, or a single penny in \$10,000. Nephelometric Turbidity Unit (NTU) - nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5.0 NTU is just noticeable to the average person.

Parts per billion (ppb) or Micrograms per liter—one part per billion corresponds to one minute in two thousand years, or a single penny in \$10,000,000. Action Level (AL) - the concentrations of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the MCLGs

as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Treatment Technique - A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions - ADEM or EPA permission not to meet an MCL or a treatment technique under certain conditions

Maximum Residual Disinfectant Level or MRDL - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal or MRDLG - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Some people may be more vulnerable to contaminants in drinking water than the general population. People who are immuno-compromised such as cancer patients undergoing chemotherapy, organ transplant recipients, HIV/AIDS positive or other immune system disorders, some elderly, and infants can be particularly at risk from infections. People at risk should seek advice about drink-

ing water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Safe Drinking Water Hotline 1-800-426-4791